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ABSTRACT 

The present paper is concerned with the eetlmatlon of the 

transition distributions of a Markov renewal process with finitely 

many states, which extends and unifies nome aspects of the results 

in the special cases of discrete and continuous parameter Markov 

chains.   A natural estimator of the transition distribution." is 

defined and shown to be consistent.    Limiting distributions of 

this estimator are derived,    A density for a Markov renewal process 

is developed to permit the definition of naximu-i likelihood 

estimators for a renewal process and for a Markov renewal process. 
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IüTRDDUCTIO:: 

The general theory of statistical Inference In Markov processes 

be^an with Bartlett's paper In 1951,  [?-]•   Later developments are 

presented in 3illin£sleyfs book [i] and his expository paper [5], 

both of which appeared in 1961,   We refer in particular to the 

development of maxlmun likelihood estinators for the transition 

probabilities of a Markov chain, either discrete or continuous 

parameter, by Billinfsley [A] and more recently by Albert [l] in 

1962.    The present paper is concerned with the estimation of the 

transition distributions of a Markov renewal process with finitely 

many states, which extends and unifies some aspects of the results 

in the special cases of discrete and continuous parameter Markcv 

chains.    In Chapter 2 a natural estimator of the transition dis- 

tributions is defined and shown to be consistent.    Limiting dis- 

tributions of this estimator are derived in Chapter 3.    A density 

for a Markov renewal process Is developed in Chapter A to permit 

the definition of maximum likelihood estimators  for a renewal process 

in Chapter 5 and for a Markov renewal process in Chapter 6« 

1.      PRELIMINAHY CONCEPTS AND DEFINITIOHS 

The constructive definition riven in [ll]  of a Markov renewal 

process  (MRP)  with    m (< 00)   states Is briefly as follows.    One is river 

matrix 0" transition distributions  (Q,.)    where each    *..    Is a 

mass function defined on  C-00,*)    satisfying    0. .(x) =0    for    x ^ 0 

and 2 V(OD) ^ ^(i ^i -^ ^ one is aiso riven an m-tup 
j=i 



Initial probabilities    (p. ,?,,,•••,p )    which satisfies   p. ^ 0 

and  > p, = 1#    Consider any two-dimensional Markov process 

{(J #X ;| n ^ o]    defined on a complete probability space that 

ratlsfles    X   = 0 (a,s#), P[J = k] = p,   and o '        o rk 

P[Jn = k, Xn ^ x!^,^,...,^^,..^^] = tj^*)       (a-s») 

for all x c (-ce#00) and 1 < k ^ m# The matrix (PJ«) is defined 

* hi -- V"'- If "u >0' set hi - "if1 V Mhlle lf 

p.. = 0, then let F.. be arbitrary« The Integer-valued stochastic 

processes {N(t)j t ^ O], {N (t); t ^ 0}, and {ll. .(t)j t ^ o] are defined \sj 
n 

ri(t) = gup {n ^ 0i>^   X. ^ t),    M4(t) = the number of times 
*mi  1=0 3 

J. = j for 1 ^ k ^ N(t), and N..(t) = the number of times 

J, = 1 and J. - = j for 1 ^ k ^ N(t). Then the stochastic 

process {ni(t),!I2(t),»»»,N (t)j t ^ o} is called a Markov renewal 

process determined by the ^iven initial probabilities and matrix of 

transition distributions. 

The following: consequences of the above definitions, derived 

in [ll], will be used below, 

PtJn = J|J0.—
Jn-2'

Jn.l = « = PlJ 

(1.1) { P[Xn i A^,'",^.^^ = 1, Jn = J] = P^Cx) 

P[X ^Xj.-.X  i^l^, n^Ol^ n Fj      (x,) 
J- K i-i  n,-1| •". 

for 0 < ^ < ••• < n. , the last equality holding with probability 

one. 



It is assumed throwhout that the MRP Is Irreducible, 

recurrent, and that   Fj J s H.    for   1 < J ^ "••   This last 

assijnptlon incurs no loss of generality as is pointed out in '12] • 

Estimators for the transition probabilities   ^«(x)    are 

defined on sample functions of the MRP over [0,t},    These sample 

functions of the MRP are equivalent to the sample functions 

(j »Ji####»Jji(tVxi,x2,##,,x:i(t^#   Let   X11   deno'te the holdin^ tl'M 

of the   .]th   vielt to state   1,    that is the   [X.,; 1 < 1 < m, 

1 ^ j ^ N, (t)}    are just a relabelLnr of   [X.| 1 ^ 1 ^ Hit)} . 

2.     DEFiriXTIO:: AND COSSISXENCY 0? A NATURAL ESTIMATOR 

Consider the estimator defined bar 

(2.1) QyCxjt) = p^.Ct) r^Cxjt), 

where   t, x > 0, 

(2.2) p..{%) = N,.(t)/N.(t), 

.  Ni(t) 

(2.3) Hi(x|t) = ^(t)'1 2   e(x " Xik)i 
k=l 

and where    e(u)    eoualr; one if   u ^> 0    and sern othervrise.    That i.r, 
A 

H.(x;t) is the ordinary empirical distribution function but 

determined from the sample, of random .«dre M. (t), of the holdinr 

times in state i. Interpret 0,.(xjt) to be zero i':   ::, (t) = 0. 



The estimator (2.1) Is a natural combination of estimators 

used In Markov chain Inference and In classical Inference for fixed 

sample size»   Derman [8] has studied   p. t(t)    as an estimator for 

the transition probabilities of a Markov chain, with the small 

difference that the total number of transitions,   N(t)# 

Is not random.    The empirical distribution function for non-random 

sample size has been studied extensively (c«f# Darling, [?])• 

Consistency of (2,1) and the limiting distributions of (2.1) 

are obtained usin^ the general limit theorems for MRP developed by 

Pyke [12],   In [12] the limiting behavior (as t - •) of sums of 

the form 

H(t) 

(2.0 Wf(t) =2 ^n-l'W 
n=l 

is studied for real valued functions    f   defined on the state space 

of an MRP.   We recall the notation used in [12].   \L..   and   pA 

denote the first moment of the distribution of the first passage 

time from state   i    to state   j    of the MRP and of the corresponding 

Markov chain [j : n ^ O], respectively.   Define recurrence Indices 

rj s    ^   rJ#0 = 0   and' f0r   3 ^ 1' 

rj#s = sup {1 <; k^ •; k > rw, ^ + jC,.^ < i< k)}. 

The sequence of random variables    (r.v.'s)    [U.    ; s > O]    is 

defined by 

4 ^   c    .      ■ ■>»-*^*'*" ****** ■•m'+tmtmum *'<***   * — 



rJ^+l 
(2-5) UJ,n=      Z       f(^l'Vn^ 

n=r.   +1 

That is,   U-       Is the contribution to the sur   W-(t)    obtained 
J#3 * 

between the   s       and the   (s+l) occurrence time of state   j» 

The random variables   [U.    J s ^ l] are Independent and Identically 

distributed*   Set 

Alk=y   r(l,k,x)dqlk(x),   Ä^jgA^ 

o k=l 

3^=/  [f(i,k,x)]2dojk(x),    B^VB^ 
k=l 

When the mean and variance of U. _ exist, they will be denoted 

2 
by   BL|    and   d.    respectively.   Since   m   is finite, it follows 

frcr. [12] that when they exist, they are given by 

n 

(2.6) -i=2VA/^ 

and 

ID 

(2.7) d* = -m2 +2 B^ / n 
r-^l 

m 

1=1 sil »1 



Theorem 2.1:    The estimator (2.1) Is unlfonnly strongly consistent 

as   t -• "   In the sense that with probability one| 

(2.8) max     sup       Q,ii(x|t) -Q. .(x)| - 0. 
1,J       x 1J 1J 

Proofl   Rewrite (2.8) as 

max     sup H^M/n^t) - p^] H1(x|t) + P1j[H1(xjt) - H^x)] 
l|j x 

^max |N,.(t)/lL(t) - p,. I + max   sup | H. (x|t) - ^(x)]. 
i,j     1J 1 1J 1       x 1 

Since   II. (t) - • (a.s.)    by the regularity of the MRP, then one 

concludes from the Glivenko-Cantelll theorem for non-random sample 

sizes, that   sup     H.(xft) -H.(x)|  -0 (a.s.).    The proof Is 
x 1 

completed hy showing   [^.(t)/^. (t) - p..] - 0 (a.s.)   for   1 ^ 1, J ^ 

Let   k*    denote the state visited after the   i       visit to state   1. 

in. 

Then 

Mt).a ^(t) 

(2.9)  2   V^N«(t)^ 2 \'* 
i=l 4=1 

where  6. ,  denotes the Kronecker delta 

and by the Strong Law of Large Numbers both the right and left hand 

sides of (2.9), when divided by N.(t), converge to p.. with 

probability one. 



3.     AS2-IPT0TIC DISTRIBUTION OF THE NATÜRAL ESTI!-'JiTOR 

The limiting distribution of (2.1),  (2.2),  (2,3) ein he 

obtained by applying the central lir.it theorem Tor functions on an 

MRP (o.f. Lemma 7.1, [12]). 

Theorem 3.1:    For fixed   i,j,x,  (t*[p. .(t) -p,,], t4"H. (x;t)  - H.(x)j) 

converges in lav; as    t -• *   to a bivarlate normal    r.v#    with means 

zero and covariancD matrix    (tf,,)    riven by 

(3.1)    d,, = ii..p. ,(l-p. .)i   (}on -\i,,¥..{*)[l-nAx)], öl:)   ■■ a 0. 

Proof;    Let    w,    and    v«    be arbitrary constants.    To prove the 

asymptotic    joint normality it suffices  to show that 

(3.:) w,tfe:S,,(t) -p    ] + v,tE:::.(x;t) - H,(xr 
XI,, 1J -1 1 

converges in lav to a normal r,v, fir all w, and v.,, ..e 

re'^rrite (3.2) as the product of [t/M4(t)] and a sum of the foi 

(2,.;) by usinr the function f iefined by 

(3.3) f(r,s,y) = [w [6 , - r. ] + wJe(x-y) - H.(x)]]6 .. 
-L c,   xj    <•. i   ' rx 

For the function (3.3) 
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Ar = ul6rl[PrJ " P1J] + "Al^r« * HlW^ 0 

and 

Br = fw/'lp^ + PiJ
2 - T^.p^] + w/[Hr(x) + ^'(x) - 2Hr(x)H1(x)]]6ri 

for 1 1 r ^ mj hence m. = 0 and the third sum in (2.7) is zero. 

Then the variance of U. . is 

m 

4 "S Br ^li^rr = wlpiJ[l " P1J] + ^Ml^ ' ^(x)]. 

2 
The variance    d.  is finite, so from Lemma 7.1 of [12]  the 

limiting distribution of   t"* Wf(t)    for the   f   given in (3.3) 

is normal with zero mean and variance   öj/i..»   But   t/N. (t) -^..(a»s») 

so the limiting distribution of (3»2) is normal with zero mean and 
2 

variance   ii..cJ.    as required. 

The zero correlation between   PiA^)    and   H. (xjt)    yields the 

following result. 

A 
Corollary 3.21 For fixed i,J,s, p,.(t) and H. (x;t) are 

asymptotically independent. 

The asymptotic normality of (3.2) can be used to obtain the 

limiting distribution of Q-.Cxjt). 

Corollary 3.3; For fixed i,j,x, t^[Q1.(x>t) - Q ,(x)] converges 

in law as t -• * to a normally distributed r.v. with mean zero and 
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Proof;    Let   (\, ,-1 1 £ 1, J £ m, 1 £ k £ s}    be arbitrary constants» •IJk 

It will suffice to show that 

w tSSS^xijxV 
i=l J=l k=l 

converges in law to a normal r»v« for all real   X.« •   We may- 

rewrite (3*9) as 

m m     s 

[t/N^t)] t"^ [^(tVN^t)]^]^ \ijk 

i=l j=l k=l 

•([N^Ct) - Pi.:i.(t)]H1(xk,t) + pijN1(t)[H1(xk>t) - H^)]). 

As in the proof of Theorem 3*1$ the expression may be shown to have 

the same limiting distribution as 

ra 

[t/:i1(t)]t-^^A1]22XiJ^ 
i=l J=l k=l 

•[H    (t)H1(xk) + P1.Ni(t)H1(xkJt) - 2p1JN1(t)H1(xk)]. 

TMs in turn can be written as a product of    [t/N. (t)]    and a sum 

of the form  (2,^) by nsinr the function    f   defined by 
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2 
The variance   d.    is finite» no hy the sane argument as in Theorem 

3»1|  the limiting distribution of (3.9) is normal with zero mean 

and variance    ^-n»    ^ie required covariance matrix (3»8) is 

obtained from the coefficients of   \, JV \      $ thereby completing 

the proof» 

Consider a renewal process,  that is, an MRP with one state 

for which    m = 1, p^ = 1, '--.-.(O = 11,(0 = N(t),    From Theorem 

3.4 the limiting distribution as    t -* «   of   N(t)*[H1(xMt) - \i\)]  for 

1 ^ k < s    with    s    fixed, is normal with zero means and covariance 

matrix    (a.      )    defined hy 

Consider the Markov chain obtained from the MRP by letting 

the holdinr times be derenerate at one, that is,    H. (x) = €(x-l), 

ji,.  = P-JJ.    Fror. Theorem 3.4. one obtains that as    t -• «"j 

t*['I. .(t)/N. (t) - p. .]    for    1 < i> j< m   converges to a normal 

r.v. with zero means and covariance matrix given by 

a, . - u*.   6,    p, ,[6.    - p.   ]# ij,uv     rii    4u ^ij1- jv      ^ivJ 

This is eq-.d-valent to Derman's result on the limiting distribution 

of   nsN..(n)/N. (n)  (c.f. Billlngsley [s]). 

4.      DENSITY FOR A MARKOV RENEWAL PROCESS 

A density for an MR? is defined in a manner similar to the 





u 

P[M(t) -- 0, Jo = Jo] = pJ  [1 - Hj  (t)]. 

Prooft    Fron (l.l)  the conditional distribution of   (X., 1 ^ 1 ^ n} 

given [J.» 0 ^ i ^ n]    is that of   n    independent r.v.'s    with 

distribution functions    HT     respectively«    The nroof follows 

immediately» 

The ienrAty of the process can now be exhibited as the Radon- 

Nikodym derivative of the pro'jability distribution U..1) with 

respect to the measure defined as follows.    Let   \i   be Lebesgrie 

measure on    [o,«),    let   \    be countinp measure on   [l,2,«#»,m], 

and let    a      be the appropriate product measure on    (ii » CL)•    For 
r. '''a. n     "n 

each set   3 e öf     define    t5*(B) ^ ^  a  (B fl ^ ),    which determines 

/       x n=o a measure on    (»*,./}• 

The density is now set forth explicitly. 

Theorem /,,,?.:    If each    H,     is absolutely continuous with density 

function    h,, then one may write 

P(B)  =fr{v) d (5*(v), B ed, 

where 
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U.2) reduces to 

n 
U.3)   f(v) = [1 - H(ut)] n h(x1)   If v = (xj^,...^). 

5. MAXIIWM LIKELIHOOD ESTIMATION FOR A RENEWAL PROCESS 

Maximum likelihood estimators (MLE) may be obtained by maxi- 

mizing (/♦•3) over a selected class of densities for an observed 

sample function R(t) = (X^,»»»,X-./, %). The classes of densities 

considered will be exponential, increasing failure rate, and 

non-increasing. Throughout the remainder of the paper it will be 

assumed that H. (x) is absolutely continuous (l ^ 1 ^ m) and that 

whenever t is fixed, N(t) and U. will be denoted by N and 

U respectively, 

a« Exponential density with parameter X, that is 

h(x) = \  exp(-Xx). 

From U.3) the likelihood function is 

N 
L(v) = exp(-V:) n X exp(-XX. ) 

k=l       K 

and the log likelihood  function is 

N 

(5.1) N log X - xf^^ + U], 

k=l 
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The maximum of (5«l) occurs at   \ = N/t,    so the MLE for   h(x)    is 

given by 

(5.2) h(x) = [N/t] exp[-Nx/t]. 

The MLE (5.2) is strongly consistent since   N/t -*\(a.s.).    This 

example is the well known one of the Poisson process for which 

the estimator of   X    is the same for a fixed-time sample as for 

a fixed-number-of-events sample. 

b»    Increasing failure rate  (IFR) densities, that is the class 

of densities for which the failure rate   q(y) = h(7)/[l - H(y)] is 

increasing.   Marshall and Proschan [10] and Grenander [9] have 

derived the MLE for   q(x) based on a sample of non-random size 

(i.e. U = 0    and    N(t) = n)    to be 

for   y < Y1 

(5.3) 9(y) = 

nin   max (v-u) [(n-u)(Yu+1-Yu) + ... + (n-v+D^-Y^)] 

v^l+1 u^i 

-1 

'or   Yi ^ y < Yi+1(l i i i n-l) 

for   y ^ Yn 

where   [ Y.;  1 ^ i ^ nj    are    [X.;  1 ^ i ^ n}    arranged in increasing 



1? 

order. By an argument similar to the one used in [10], the MLE 

for q(x) can be derived for a renewal process» 

Theorerr. 5«1; Let (Y,, _,•••> I,.) be an ordered sample from 

an IFR renewal process. If Y, ^ U < Y. +1 for 1 ^ 10 ^ N - 1 
o      o 

or U > Y^ and 1 = N then the MLE of q(y) is given by 

0 for y < Y1 

(5./J q(y) =    ^   min   nax (v-u)L
rcu + ••• + cv_l^1 ror Yi ^ < Yi+1 

^i+1 usi (1 ^ . ^ ^ 

for   y^Y. N 

where 

(N.i4-1)(Y1+1 - Y^ for l^i^lo 

(5.5)    c. ^    (N-i0)(Y1 +1 - Yi ) + (U - ^ )        for   1 = i( 
CO o 

(N-i)(Y1+1 - Y^ for   io < i ^ N. 

If   U < Y1, q(y)  is given by (5,3). 

Proof;    Since    h = q exp(-Q)    and    1 - H = exp(-Q)    where 
/y 

q(z) dz, the log likelihood 

function can be written as 




















